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method for the

Lagrangian
simulation of

transport processes

D. Spivakovskaya et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Ocean Sci. Discuss., 4, 623–652, 2007
www.ocean-sci-discuss.net/4/623/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Ocean Science
Discussions

Papers published in Ocean Science Discussions are under
open-access review for the journal Ocean Science
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Abstract

Random walk models are a powerful tool for the investigation of transport processes
in turbulent flows. However, standard random walk methods are applicable only when
the flow velocities and diffusivity are sufficiently smooth functions. In practice there are
some regions where the rapid but continuous change in diffusivity may be represented5

by a discontinuity. The random walk model based on backward Îto calculus can be
used for these problems. This model was proposed by LaBolle et al. (2000). The latter
is best suited to the problems under consideration. It is then applied for two test cases
with discontinuous diffusivity, highlighting the advantages of this method.

1 Introduction10

The transport of a tracer can be described by using the advection-diffusion equation. In
general, this equation cannot be solved analytically, so that numerical methods must be
resorted to. The most popular method is an Eulerian approach, in which the transport
equation is solved on a fixed spatial grid. The finite element method and finite difference
method are primary examples of this class of solution methods.15

An alternative method is the Lagrangian approach, which follows particles through
space at every time step. The movement of an individual particle is usually modelled
in two steps: the advection, which is deterministic, is simulated by a translation of each
particle with a velocity derived from the local fluid velocity field. Diffusion is generally
simulated using stochastic methods. Then, by averaging the positions of many par-20

ticles the advection-diffusion processes can be described (Thomson, 1987; Sawford,
1993; Costa and Ferreira, 2000; Zimmermann et al., 2001; Proehl et al., 2005; Delhez
and Deleersnijder, 2006).

Particle-tracking models offer advantages over Eulerian methods in several respects.
First, the solution obtained by using the particle tracking method is always mass con-25

servative and non-negative, while the Eulerian methods is susceptible to excessive
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method for the

Lagrangian
simulation of

transport processes

D. Spivakovskaya et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

numerical dispersion and artificial oscillations (Zheng and Bennett, 2002) for advective
dominated problems or problems with large gradients on the initial concentration field.
Second, for problems where the tracer does not occupy the whole model domain, the
Lagrangian methods models may be computationally more efficient than their Eulerian
counterparts (Hunter, 1987; Spivakovskaya et al., 2005). Third, if the velocity field can5

be locally described by an analytic function, then particles may be advected exactly
through that field by simple integration (Hunter et al., 1993). However, it should be
noted, that the numerical flow can affect the accuracy of the particle tracking method.
In this case the interpolation of flow variables in arbitrary particle location that can lead
to local mass balance error and solution anomalies (LaBolle et al., 1996).10

In general, both approaches have their own advantages and disadvantages: for in-
stance, the Lagrangian approach can be an alternative to the Eulerian methods in
case of steep concentration profile. On the other hand, the Eulerian approach is more
suitable for dispersion-dominated problems, for which it provides accurate solution in
reasonable time. The choice of a method depends on the problem under considera-15

tion. Sometimes, it is not easy to classify the problem and decide which method should
be applied. The mixed Eulerian-Lagrangian methods attempt to combine the advan-
tages of Lagrangian and Eulerian methods (Konikow and Bredehoeft, 1978; Celia et
al., 1990; Yeh, 1990; Zhang et al., 1993; Zheng and Wang, 1999).

For space-varying diffusivity the advection part of the random walk model requires20

an additional correction term, which is equal to the diffusivity gradient. Because of
this correction term the particles do not accumulate in regions of low diffusivity (Hunter
et al., 1993; Visser, 1997; Ross and Sharples, 2004). This random walk model can
be introduced by using the theory of stochastic differential equations (SDE) (Heemink,
1990; Dimou and Adams, 1993; Stijnen et al., 2006; Spivakovskaya et al., 2007). The25

advection-diffusion equation is interpreted as the Fokker-Planck equation (Oksendal,
1985) and the corresponding SDE in Îto sense can be derived. As a result, the particle’s
track is simulated by a stochastic process, whose transition density function coincides
with the tracer concentration. The Îto formulation is not the only way to introduce the
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method for the

Lagrangian
simulation of

transport processes

D. Spivakovskaya et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

particle tracking model. Another random walk model based on Stratonovich stochastic
calculus is also quite popular.

Unfortunately, the common random-walk methods for simulating transport can only
be applied when the diffusivity is sufficiently smooth, otherwise the correction term in
the advection part dominates the flow velocity. In many situations the rapid but contin-5

uous change in turbulence statistics that occurs may be represented by a discontinuity
(Thomson et al., 1997). Recently LaBolle et al. (2000) proposed a random walk model
based on backward Îto calculus that requires no corrective velocity.

In this paper, we discuss the random walk models based on Îto, Stratonovich and
backward Îto calculus. The backward Îto random walk model is seen to be appropriate10

for dealing with a discontinuity in the diffusivity field. It is applied for two test cases, for
which key properties of the solutions can be derived analytically.

2 The Îto, Stratonovich and the backward Îto random walk models

Let us consider the following one-dimensional advection-diffusion problem:

∂C
∂t

= − ∂
∂x

(
uC − k

∂C
∂x

)
, (1)

Here C(t, x) is the concentration of a passive tracer, u is flow velocity and k(x) is
diffusivity term. Equation (1) can be interpreted as a Fokker-Planck equation (see
Karatzas and Shreve, 1998; Oksendal, 1985) and the corresponding Stochastic Differ-
ential Equation (SDE) in Îto sense can be considered

(I) dX (t) = (u + k′(x))dt +
√

2kdW (t) (2)
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where W is a Wiener process, i.e. stochastic process with the following statistics
(t1≤t2≤t3≤t4)

E (W (t2) −W (t1)) = 0
E ((W (t4) −W (t3)(W (t2) −W (t1)) = 0
E ((W (t2) −W (t1))(W (t2) −W (t1)) = t2 − t1

(3)

Here E (X ) denotes the expectation of the random variable X . The solution of the
advection-diffusion problem (1) is then the probability density function of the stochastic
process X (t). The SDE (2) actually is not a “differential” equation, but can be inter-
preted as an integral equation

(I) X (t) = x0 +

t∫
0

(u + k′(x))dt +

t∫
0

√
2kdW (t) (4)

The first term (advection) in the right hand side of Eq. (4) is a standard Lebesgue
integral, while the second part (diffusion) of Eq. (4) may be introduced as the limit of
the sum (LaBolle et al., 2000)

(I)

t∫
0
f (X, t)dW (t) =

ms- lim
n→∞

n∑
k=1

f (X (tk−1), tk−1)[W (tk) −W (tk−1)]
(5)

Here 0=t0<t1< . . . tn−1=tn=t and ms− lim denotes the limit in the mean square sense.
In general, to define unique stochastic integral one needs to specify at which point the
function f (X, t) is evaluated. For instance, in the definition of the Îto integral the function
f is always evaluated in the beginning of subinterval [tk−1, tk ] rendering f (X (tk−1), tk−1)
statistically independent of [W (tk)−W (tk−1)] and thus ensuring that the Îto integral has
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zero mean. One well-known alternative, the Stratonovich integral, may be defined as a
limit of the sum in which the function is evaluated at the middle of the time interval

(S)

t∫
0
f (X, t)dW (t) =

ms- lim
n→∞

n∑
k=1

f
(
X (

tk−1+tk
2 ), tk−1+tk

2

)
×

[W (tk) −W (tk−1)]

(6)

The corresponding random walk model can be written as follows:

(S) dX (t) =
(
u +

1
2
k′(x)

)
dt +

√
2kdW (t), (7)

The random walk models in the Îto or Stratonovich sense contain the diffusivity gradient
in the advection part. For problems with large space variations of the diffusivity, this
gradient may be very high and, therefore, dominates in the advection term. As a result,
the solution obtained by the random walk model in the Îto or Stratonovich sense will not
be accurate. To circumvent this diffusivity, one may have recourse to a random walk
model that does not require a diffusivity gradient in the advection part. This formulation
is based on the backward Îto integral (see Karatzas and Shreve, 1998; LaBolle et al.,
2000).

(bI)

t∫
0
f (X, t)dW (t) =

ms- lim
n→∞

n∑
k=1

f (X (tk), tk)[W (tk) −W (tk−1)]
(8)

Using the backward Îto SDE for modelling advection-diffusion processes with discon-
tinuous diffusivity was proposed by LaBolle et al. (2000). The corresponding random
walk model may be written as follows:

(bI) dX (t) = udt +
√

2kdW (t) (9)
628
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The sensitivity of the limit of the integral sums to the choice of location at which the func-
tion is evaluated is a consequence of the unbounded variation of the Wiener process
(Karatzas and Shreve, 1998). However, each of the random walk methods introduced
above is consistent with the advection-diffusion Eq. (1). For continuous diffusion term,
all these methods provide the same solution of equation.5

3 Numerical integration of the SDEs

It can be shown from the advection-diffusion Eq. (1) (see Hunter et al., 1993) that the
mean and variance of the tracer cloud spread during time range (t, t+∆t) are given by

N1 = ui∆t + k′(X i )∆t
N2 − N2

1 = 2k(X i )∆t + o(∆t) ≈ 2k(X i )∆t
(10)

Here Ni , i=1,2 denote the i -th moment of the concentration. Now we show that the first
two moments of the displacement ∆X i=X i+1−X i , i=1, . . . , L in the random walk mod-
els (in Îto, Stratonovich and backward Îto senses) are the same as the first moments of
the concentration C.10

Specific numerical schemes are associated with each of the stochastic methods
mentioned above. For instance, the SDE in the Îto sense can be numerically integrated
by applying the explicit Euler method:

X i+1 = X i + ui∆t + k′(X i )∆t +
√

2k(X i )∆tR i (11)

Here, X i=X (ti ), u
i=u(ti , X i ), ti=i∆t, i=0, . . . , L−1, ∆t=t/L and R i are mutually inde-

pendent normally distributed random numbers with parameters (0,1), e.g. the random
variables with the following density function

p(y) =
1

√
2π

e− y2

2 (12)
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We need only to find the probability law of the solution X (t) of the SDE (in other words,
solution in the weak sense), but not to approximate the solution itself. For these pur-
poses, it is not necessary to chose normally distributed random variables. We can
use any distribution with the same mean and variance, for instance, random numbers
uniformly varying between −

√
3 and

√
3.5

The solution obtained by using the random walk model (Eq. 11) has the same prop-
erties

E (∆X i ) = E (ui∆t + k′(X i )∆t +
√

2k(X i )∆tR i ) =
ui∆t + k′(X i )∆t

V ar(∆X i ) = E
(
∆X i − (E (∆X i ))

)2
=

E (
√

2k(X i )∆tR i )2 = 2k(X i )∆t

(13)

As a result the solution obtained by this random walk model is consistent with the
advection-diffusion Eq. (1).

The Stratonovich formulation of the particle model requires the Heun method (Kloe-
den and Platen, 1999)

∆X̃ i =
√

2k(X i )∆tR i

X i = X i−1 + ui∆t + 1
2k

′(X i )∆t+
1
2

(√
2k(X i )∆t +

√
2k(X i + ∆X̃ i )∆t

)
R i

(14)

Let us consider the mean and variance of ∆X i obtained by method (14)

E (∆X i ) = E
(
ui∆t + 1

2k
′(X i )∆t

+(
√

2k(X i )∆t +
√

2k(X i + ∆X̃ i )∆t)R i
)

ui∆t + 1
2k

′(X i )∆t + 1
2E

(√
2k(X i + ∆X̃ i )∆tR i

) (15)
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Let us expand the function B(X i+∆X̃ i )=
√

2k(X i+∆X̃ i ) into Taylor series

B(X i + ∆X̃ ) = B(X i ) + B′(X i )∆X̃ + O(∆X̃ 2) =√
2k(X i ) + k′(X i )

√
∆tR i + o(∆t) ≈√

2k(X i ) + k′(X i )
√
∆tR i

In other words the following equation is valid√
2k(X i + ∆X̃ i ) ≈

√
2k(X i ) + k′(X i )

√
∆tR i (16)

Substituting Eq. (16) into (15) yields

E (∆X i ) = ui∆t + 1
2k

′(X i )∆t + 1
2k

′(X i )∆tE (R i )2 =
ui∆t + k′(X i )∆t

(17)

The variation of the displacement ∆X in the Heun scheme coincides with the variation
of the concentration

V ar(∆X i ) =

E
(

1
2 ((

√
2k(X i )∆t +√

2k(X i + ∆X̃ )∆t)R i − k′(X i )∆t)
)2

=

E
(√

2k(X i )∆tR i + 1
2k

′(X i )(R i − 1)∆t
)2

=

2k(X i )∆t + o(∆t) ≈ 2k(X i )∆t

(18)

We can conclude that the random walk model (14) has the same first two moments as
a standard random walk model in the Îto sense and as in Eq. (10).
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Finally, the backward Euler scheme is appropriate for the backward Îto formulation
(see LaBolle et al., 2000)

∆X̃ i =
√

2k(X i )∆tR i

X i = X i−1 + ui∆t +
√

2k(X i + ∆X̃ i )R i
(19)

Using Eq. (16) we can again find the moments of the distribution of X (t) obtained by
backward Euler scheme

E (∆X i ) =

E
(
ui∆t +

√
2k(X i + ∆X̃ i )∆tR i

)
=

ui∆t + E
(

(
√

2k(X i ) + k′(X i )
√
∆tR i )

√
∆tR i

)
=

ui∆t + k′(X i )∆t

(20)

and

Var(∆X i ) =

E
(√

2k(X i + ∆X̃ i )∆tR i − k′(X i )∆t
)2

=

E
(√

2k(X i )∆tR i + k′(X i )∆t(R i )2 − k′(X i )∆t
)2

=

2k(X i )∆t + o(∆t) ≈ 2k(X i )∆t.

(21)

As a result the solution obtained by the backward Îto random walk model is consistent
with the advection-diffusion Eq. (1). The main differences between the Îto, Stratonovich
and the backward Îto formulation are shown in Fig. 1.
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4 Illustrations

In this section the random walk models (in Îto and backward Îto senses) are applied
for two test cases. In general, the analytical solution of the direct problem (Eq. 1)
cannot be found; however, the residence time of a tracer can be obtained (Delhez et
al., 2004; Deleersnijder et al., 2006a,b). The residence time of a water or tracer parcel5

in a control domain is usually defined as the time taken by this parcel to leave the
domain of interest (Bolin and Rodhe, 1973; Zimmerman, 1976, 1988; Braunschweig
et al., 2003; Takeoka, 1984; Delhez and Deleersnijder, 2006). As such, the residence
time is one of the most popular tool to describe and understand environmental issues.

Mathematically, the mean residence time θ(x) of the tracer of initial mass m(t0) re-
leased at time t0 can be computed by monitoring the temporal evolution of the mass of
the tracer in the control region (Bolin and Rodhe, 1973; Takeoka, 1984)

θ(x) = − 1
m(t0)

∫ 0

m(t0)
t dm (22)

Delhez et al. (2004) introduced an alternative procedure designed for numerical mod-10

els. They showed that the residence time can be found from the solution of the adjoint
problem to the advection-diffusion equation.

For both examples, we assume that the diffusivity is discontinuous at some location.
Such diffusivity profile does not exist in the nature; however, there are regions of large
space variations of the diffusivity. The discontinuous diffusivity can be considered as15

a limit case for which it is generally easier to find the analytical solution. In addition, if
the Lagrangian method under consideration can successfully handle a discontinuty in
the diffusivity field, it is safe to assume that this method will be able to deal with region
of high gradients of the eddy coefficient.
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4.1 Illustration 1: settling and diffusion problem

First, we apply the random walk model (9) to the settling and diffusion model (Fig. 2)
proposed and analyzed by Deleersnijder et al. (2006a,b). In this model we assume
that x is a vertical coordinates that increases upwards. It is zero at interface between
the mixed layer and the underlying pycnocline. If h is the height of the mixed layer, the
water-air interface is located at x=h. w represents the settling velocity (we assume
that w is a constant) and k(x) is the vertical eddy diffusivity, which is positive in the
interval 0<x<h and is zero in the pycnocline, i.e. underneath the domain of interest.
We suppose that the upper boundary of the domain is impermeable[
wC + k

∂C
∂x

]
x=h

= 0 (23)

It is only by settling that the particles of the tracer under study can leave the domain of
interest and enter the pycnocline, so the turbulent diffusion flux must be prescribed to
be zero at the bottom of the mixed layer[
k
∂C
∂x

]
x=0

= 0 (24)

The initial concentration is

C(0, x) = δ(x − x0) (25)

where δ(x) denotes Dirac delta function.
Deleersnijder et al. (2006b) showed that the residence time may exhibit a disconti-

nuity at the interfaces between the mixed layer (0<x<h) and pycnocline (x<0), for the
eddy diffusivity is zero in the latter and positive in the former. Now we assume that the
boundary of interest is x=ε, rather than x=0. ε is positive or negative according to
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whether the boundary is located in the mixed layer or the pycnocline, respectively. The
corresponding residence time is hereinafter denoted

θ(x0, ε) =

∞∫
0

h∫
ε

C(t, x)dxdt

which may be recast as a function of x. There is no closed form solution for C(t, x), but
the residence time may be calculated analytically (Deleersnijder et al., 2006a).

For the sake of simplicity, it is assumed that the eddy diffusivity is a positive con-
stant λ, in the mixed layer and zero in the pycnocline. It is also desirable to introduce
dimensionless variables:

x′ =
x
h
, θ′ =

θ

h/w
, P e =

wh
λ

(26)

From now on, only dimensionless variables will be used, so that it is appropriate to drop
the primes. If ε>0, the lower boundary is located at a level where the eddy diffusivity
is nonzero, while ε<0 corresponds to the case, when the lower boundary is located
below the pycnocline. Let us assume that the lower boundary of the domain is pushed
towards the bottom of the mixed layer ε>0, ε→0+, ε<0, ε→0−. Deleersnijder et al.
(2006b) show that the corresponding residence times are different. In particular, for the
chosen value of the diffusivity

θ(x,0−) = x +
1 − e−P e(1−x)

P e
(27)

and

θ(x,0+) = x − e−P e(1−x) − e−P e

P e
, (28)
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We apply the Îto and the backward Îto random walk models to simulate the transport of
the tracer in the proposed model. The Îto random walk model formulation corresponds
to the case when the lower boundary of the domain is placed above the pycnocline,
while the backward Îto random walk model provides the solution of the case when the
lower boundary of the domain is placed under pycnocline.5

The exact and the numerical solutions for N=104 particles are shown in Fig. 3.
From Fig. 3 we can conclude that the residence times obtained by applying the Îto

and backward Îto random walk schemes are different. One can wonder which scheme
provides the right solution. In reality, the both methods are correct, however they give
answers for two different problems.10

In Sect. 3 it was shown that for a smooth diffusivity function both random walk
schemes are identical. In the Îto case, an aditional drift due to the spatial variation
of the diffusivity is present. Because of this additional drift particles cannot stay in re-
gions with low diffusivity. In the backward Îto formulation the additional drift term has
disappeared and is included in the random term by applying the two-steps backward15

Euler scheme.
The disadvantage of the Îto formulation is that it cannot handle the case of discon-

tinuous diffusivity. By applying an Îto model in this case the diffusivity drift is zero
everywhere except exactly at the boundary where it is infinite. By applying a numerical
scheme, particles will never reach exactly the pycnocline and as a result the diffusivity20

drift becomes essentially zero. Therefore a particle that comes close to the boundary
will never go back into the domain (see Fig. 4a) and the residence time computed is in
fact the residence time O(x,0+).

By applying the backward Îto model the diffusivity drift is included in the random term
of the model. Now a particle does get back into the domain even if it is very close to25

the boundary (see Fig. 4b). So the presence of the pycnocline is taken into account,
leading to the residence time O(x,0−).
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4.2 Illustration 2: the direct and adjoint problems for the residence time

In the previous section we considered a model, in which the diffusivity exhibits a discon-
tinuity at the boundary of the domain. However, in practice the diffusivity can change
rapidly inside the domain of interst. An example of such a problem is needed. In this
respect, inspiration may be found in Delhez and Deleersnijder (2006).5

Let t and x denote time and a space coordinate, respectively. In the domain
−L≤x≤L, the concentration of the tracer C(t, x) obeys the following partial differen-
tial problem

∂C
∂t

= − ∂
∂x

(
uC − k

∂C
∂x

)
,

C(0, x, x0) = δ(x − x0), −L < x0 < L,
C(t,±L, x0) = 0

(29)

where the positive constant u is the fluid velocity, while k(x)>0 denotes the eddy diffu-
sivity. The residence time in the domain of interest of the tracer whose concentration
obeys the partial differential problem (29) is (Delhez et al., 2004)

θ(x0) =

∞∫
0

L∫
−L

C(t, x)dxdt (30)

In principle this value may be evaluated for any admissible value of x0. The ensuing
function may then be recast as a function of x, i.e. θ(x). However, obtaining the ana-
lytical solution of the direct problem (29) is usually considered as difficult. Fortunately,
it is much easier to obtain the residence time by solving the adjoint problem (Delhez et
al., 2004; Delhez and Deleersnijder, 2006):

d
dx

(
k
dθ
dx

+ uθ
)
= −1,

θ(±L) = 0
(31)
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For the purposes of the present study, the eddy diffusivity must exhibit a discontinuity
inside the domain of the interest. The simplest expression that satisfies this constraint
probably is the following piecewise constant function

k(x) =
{
k+, 0 < x ≤ L
k−, −L ≤ x < 0

(32)

where k+ and k− are positive constants. Therefore, at x=0, the residence time must
satisfy two matching conditions:

[θ(x)]x=0+

x=0− = 0, (33)

[
k
∂θ
∂x

+ uθ
]x=0+

x=0−
= 0, (34)

In the developments below, the residence time at x=0 will be denoted θ0. In other
words, the latter satisfies the equalities

θ(0−) = θ0 = θ(0+) (35)

4.2.1 The zero advection case

If the advection is zero (u=0), then it is appropriate to introduce the dimensionless
parameter µ=k+/k− and variables

t′ =
t

L/(k−)2
, (x′, x′

0) =
(x, x0)

L
, k′ =

k
k− ,

C′ =
C

1/L
, (θ′, θ′

0) =
(x, x0)

L/(k−)2

(36)

638

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/623/2007/osd-4-623-2007-print.pdf
http://www.ocean-sci-discuss.net/4/623/2007/osd-4-623-2007-discussion.html
http://www.egu.eu


OSD
4, 623–652, 2007

The backward Îto
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For the sake of simplicity the primes can be dropped. Hence, the dimensionless diffu-
sivity is

k(x) =
{
µ, 0 < x ≤ 1
1, −1 ≤ x < 0

(37)

After some calculations, the residence time is obtained:

θ(x) =


− x2

2µ
−

2µθ0 − 1

2µ
x + θ0, 0 < x ≤ 1

−x2

2
+

2θ0 − 1

2
x + θ0

(38)

with

θ0 =
1

1 + µ
(39)

The analytical and numerical solutions obtained by Îto, Stratonovich and backward Îto
random walk methods are shown on Figs. 5, 6 respectively. Clearly, the backward Îto
solution is much better than the Stratonovich soution, which, in turn, is better than that
obtained by the classical Îto method.

4.2.2 The advection-diffusion case5

If advection is present (u>0), then it is appropriate to introduce the following dimen-
sionless parameters and variables:

t′ =
t

L/u
, (x′, x′

0) =
(x, x0)

L
, P e±′

=
uL
k± ,

C′ =
C

1/L
, (θ′, θ′

0) =
(x, x0)

L/u

(40)
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As in the previous example the primes can be dropped. It is also useful to define a
piecewise constant Peclet number:

P e(x) =
{
P e+, 0 < x0 ≤ 1
P e−, −1 ≤ x0 < 0

(41)

After some calculations, the residence time is obtained:

θ(x) =

{
a+ − x + b+e−P e+x, 0 < x ≤ 1

a− − x + b−e−P e−x, −1 ≤ x < 0
(42)

with

a± =
e∓P e±

θ0 ∓ 1

e∓P e± − 1
, a± =

±1 − θ0

e∓P e± − 1
(43)

and

θ0 =
P e+ − P e−

P e+P e−
(e−P e+

− 1)(e−P e−
− 1)

e−P e+ − e−P e− −

e−P e+

+ e−P e−−1

e−P e+ − e−P e−

(44)

Figure 7 shows the analytical soluton and the numerical solutions obtained from Îto,
Stratonovich and backward Îto formulations are shown on Fig. 8. One can see easily
that only the solution obtained by the backward Îto random walk model is very close to
the analytical solution, while the Stratonovich and Îto solutions significantly differ from
the exact residence time.5
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5 Conclusions

In this paper we considered the random walk model that can be applied to model the
transport process in the regions with large space variations of the diffusivity, or as the
limit case with discontinuous diffusivity. This model proposed by LaBolle et al. (2000)
is based on the backward Îto stochastic integral. It is consistent with the advection-5

diffusion equation and does not contain the diffusivity gradient in the advection part.
Two test cases were analyzed: the sinking-diffusion model, in which the diffusivity ex-
hibits a discontinuity at one boundary of the domain and the advection-diffusion prob-
lem with a discontinuity in the diffusivity inside the domain of interest. For both test
cases the analytical solution of the indirect problem, e.g. finding the residence time, is10

known. The backward Îto random walk model was applied and the results show that
this model provides the correct results for discontinuous diffusivities, while other, better
known, random walk models perform rather poorly.

Acknowledgements. E. Deleersnijder is a Research Associate with the Belgian National Fund
for Scientific Research (FNRS). His contribution to the present study was made in the frame-15

work of the Interuniversity Attraction Pole TIMOTHY (IAP. 13) which is funded by the Belgian
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Advection-diffusion equation.
⇓ ⇓ ⇓

Îto Stratonovich backward Îto
⇓ ⇓ ⇓

t∗k = tk−1 t∗k = (tk + tk−1)/2 t∗k = tk
⇓ ⇓ ⇓

dX = (u + ∂k
∂x )dt +

√
2kdW (t) dX = (u + 1

2
∂k
∂x )dt +

√
2kdW (t) dX = udt +

√
2kdW (t)

⇓ ⇓ ⇓
Euler explicit Heun Euler backward

⇓ ⇓ ⇓

∆X i = (ui + (k′(X i ))∆t +
√

2k(X i )∆tR i
∆X̃ i =

√
2k(X i )∆tR i

∆X i = (ui + 1
2 (k′(X i ))∆t+

1
2 (
√

2k(X i )∆t +
√

2k(X i + ∆X̃ i )∆t)R i

∆X̃ i =
√

2k(X i )∆tR i

∆X i = ui∆t +
√

2k(X i + ∆X̃ i )∆tR i

⇓ ⇓ ⇓
Random walk model (consistent with the advection-diffusion equation)

Fig. 1. Comparison between Îto, Stratonovich and backward Îto formulations.
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Fig. 2. Sinking-diffusion model: illustration of its geometry, parameters and boundary condi-
tions. Source Deleersnijder et al. (2006a).
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Fig. 3. The profile of the residence times θ(x,0−) and θ(x,0+) in the surface mixed layer for
various values of the Peclet number. Dimensionless variables are used and the eddy diffusivity
is assumed to be constant in the mixed layer. ∆t=10−4, N=105.
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Fig. 4. The track of a particle released at location x0=0.1 in case (a) Îto and (b) backward Îto
random walk models.
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method for the

Lagrangian
simulation of

transport processes

D. Spivakovskaya et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3
Exact solution

x

re
si

de
nc

e 
tim

e

Fig. 5. The profile of the residence time in case of zero advection. Dimensionless variables
were used. The value of parameter: µ=0.1.
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Fig. 6. The profile of the residence time in case of zero advection. Dimensionless variables
were used. Numerical solution for N=104 particles with time step ∆t=10−4.
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Fig. 7. The profile of the residence time in case of non zero advection. The value of parameter:
P e+=0.5, P e−=10. Dimensionless variables were used.
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Fig. 8. The profile of the residence time in case of non zero advection. Numerical solution for
N=104 particles, P e+=0.5, P e−=10. Dimensionless variables were used.
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